Selectivity is the Essence of Solar Cells

Peter Würfel
Karlsruhe Institute of Technology
Solar cells must produce current

E

\gamma

driving forces?

E_c

E_{FC}

E_{FV}

E_v

j_Q
electrons have many handles at which forces can attack

charge: \[- \nabla (-e\phi)\] electrical potential

mass: \[- \nabla m\Psi\] gravitational potential

particle: \[- \nabla \mu\] chemical potential

resulting force: \[- \nabla (\mu - e\phi) = - \nabla \eta = - \nabla \mathcal{E}_F\] electrochemical potential
metal contacts are not selective

driving forces are not selective

metal

metal contacts are not selective
Separation of hydrogen and oxygen with selective membranes

driving force: pressure gradient, gradient of chemical potentials
Separation of electrons and holes by selective conductivities in front of metal contacts.
optimal hetero-structure ($E_G = 1.34 \text{ eV}$)
full area contacts at maximum power

$V_b = 697 \text{ mV}, \ V_{mpp} = 987 \text{ mV}$

$\eta = 33.7\%$
realisation in organic solar cells
PTAA / perovskite / C60

simulation by U. Wuerfel, Fraunhofer ISE